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The law of error for Bose statistics is not unique; the family of probability 
distributions differ insofar as zero-point energy is concerned. This is traced back 
to the spontaneous emission term in the Einstein mechanism of emission and 
absorption of radiation. It is argued that the spontaneous emission term is 
unimportant for blackbody radiation and an alternative mechanism is proposed 
in which thermal equilibrium is secured through a constraint on the number of 
quanta in any given mode of the radiation field. Both mechanisms predict a 
modification of theMaxwell velocity distribution at high frequencies and are 
compared in relation to Doppler broadening and their low-temperature behavior. 

1. I N T R O D U C T I O N  

Eins te in ' s  p a p e r  on the emiss ion  and  abso rp t i on  o f  r ad ia t ion  const i tu tes  
the first a t t empt  to der ive  P lanck ' s  r ad ia t ion  law f rom a phys ica l  m e c h a n i s m  
involving the rates o f  ab so rp t i on  and  emiss ion  o f  rad ia t ion .  The  emiss ion  
process ,  acco rd ing  to Einste in ,  consis t  o f  two terms.  One te rm is i n d e p e n d e n t  
o f  the r ad i a t i on  dens i ty  p resen t  before  emiss ion.  It descr ibes  s p o n t a n e o u s  
emiss ion  and  is different  f rom zero even in the  case where  the  average 
n u m b e r  o f  pho tons  in the  given m o n o c h r o m a t i c  s tand ing  wave is zero. This  
te rm Eins te in  a t t r ibutes  to  Hertz ,  who a s sumed  that  an "osc i l l a t ing  P lanck  
r e sona to r  rad ia tes  energy in a we l l -known way,  regard less  o f  whe the r  or  
not  it is exc i ted  by  ex te rna l  r ad i a t i on"  (Einste in ,  1917). 

The  o ther  te rm is p r o p o r t i o n a l  to the  in tens i ty  o f  r ad ia t ion  at the given 
f requency  p r io r  to the  emiss ion  process .  This  i n d u c e d  emiss ion  process  is 
c red i ted  to Einstein,  who  found  it necessary  in o rde r  to a t ta in  the rmal  
equ i l ib r ium in a gas emi t t ing  and  abso rb ing  r ad i a t i on  (Hei t ler ,  1954). The  
abso rp t ion  process ,  l ike s t imula ted  emiss ion,  is p r o p o r t i o n a l  to the  in tens i ty  
o f  rad ia t ion .  
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Multiplying these rates by the probability of a molecule being in any 
one of a given number of  discrete energy states, which he assumes is given 
by the classical Boltzmann statistics, Einstein goes on to suppose that in a 
state of  thermal equilibrium, there exists a dynamical equilibrium between 
the rates of absorption and emission between any two states. In order to 
eliminate one of the three rate coefficients, Einstein takes the high- 
temperature limit, from which he concludes that if the statistical weights 
of  the two states are equal, then the coefficients of absorption and induced 
emission are equal. Reintroducing this expression into the dynamical equili- 
brium condition, he obtains Planck's radiation law together with the Bohr 
frequency condition. The derivation can be criticized on the basis that the 
equivalence between the coefficients of absorption and stimulated emission 
is an asymptotic one, as the temperature increases without limit, and that 
it cannot be introduced into an expression which is supposed to be valid 
at any finite temperature (Lavenda, 1989). 

Although Planck's radiation law can be derived from such a mechanism 
of absorption and emission of radiation by excited molecules, is the mechan- 
ism unique and is it the mechanism responsible for the blackbody radiation 
spectrum? Planck's radiation law concerns only the thermal part of the 
energy density of radiation at a given frequency. The total energy density 
of radiation consists of a thermal part and a contribution from an external 
source of  electromagnetic radiation. The regions in which the thermal part 
will be dominant can be discerned from Planck's radiation law and interpret- 
ing the density of modes in terms of the ratio of the spontaneous to the 
stimulated coefficients of  emission (e.g., Loudon, 1983). The boundary 
occurs where stimulated and spontaneous emission will be approximately 
equal; at room temperature, the radiation will have a wavelength of 
A ~ 50 ~m, corresponding to a frequency of about 6 x 10 ~2 Hz, which is in 
the far-infrared region. For frequencies small (large) compared to this 
frequency, the stimulated emission rate is much larger (smaller) than the 
spontaneous emission rate. As far as the thermally excited energy density 
is concerned, it will be nonnegligible through the infrared region of the 
spectrum at room temperature, where the spontaneous emission rate is much 
smaller than the rates of thermally-stimulated emission or of absorption of 
thermal radiation. 

Therefore, spontaneous emission does not appear to be an important 
mechanism in the region of  the spectrum where the thermally excited energy 
density is the dominant contribution to the total energy density of radiation. 
Yet according to Einstein's mechanism, spontaneous emission, which is 
different from zero even if the average number of photons in a given mode 
of the field is zero, appears to be necessary in order to achieve thermal 
equilibrium in a cavity filled with radiation. The question is whether 
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spontaneous emission can or cannot be replaced by another term in the 
rate equation so that thermal equilibrium can be secured in that part  of  the 
spectrum where the thermal contribution to the energy density is nonnegli- 
gible. 

Is the picture of  an excited molecule or charged "resonators"  in the 
walls of  the cavity applicable to the study of blackbody radiation? Since 
atomic excited states in the optical frequency region have negligible thermal 
populations at room temperature,  one must either increase the temperature 
or use an external source whose frequency satisfies the resonance condition 
for the transition. Excited molecules hardly seem to be adapted to describe 
the processes of  absorption and emission of blackbody radiation. 

In this paper  we propose a different mechanism of blackbody radiation 
that does not involve spontaneous emission but rather involves the constraint 
that the absorption process leaves a finite number  of  quanta in the mode 
of the field at the given frequency. This constraint formally behaves as a 
spontaneous emission term in securing equilibrium while differing from 
Einstein's mechanism by a zero-point energy. We discovered such a mechan- 
ism from the fact that the law of error for Bose statistics is not uniquely 
given by the negative binomial distribution, as the binomial distribution is 
the unique law of error for Fermi statistics (Lavenda, 1988). Rather, there 
is a family of  distributions, geometric, Pascal, and negative binomial, all 
of  which are laws of error for Bose statistics, but differing in the presence 
or absence of a zero-point energy. 

2. THE Q U E S T I O N  OF THE Z E R O - P O I N T  ENERGY 

The binomial distribution is the unique law of error for which the mean 
value and most probable value give the Fermi "distribution" (i.e., the average 
number  as a function of the temperature and frequency). However, there 
is a family of  probability distributions which are laws of error that give the 
Bose distribution as the most probable and average value of the distribution. 
We have previously derived Bose statistics from the negative binomial 
distribution and the second law but, if we set the number  of  states equal 
to one, then it becomes the geometric distribution. In fact, this constitutes 
the simplest derivation of Bose statistics in which one assumes that the 
probability of  occupying the state is independent of  the number  of particles 
already in this state, so that the probability distribution f~(n)oc qn, where 
the unknown parameter  q ~ [0, 1] (Landsberg, 1959). The normalizing factor 
is easily found to be p = 1 - q, so that the distribution 

f~(n; q)=pq" (1) 

is the geometric distribution, which depends upon the parameter  q. The 
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maximum likelihood estimate of this parameter is the solution to the 
likelihood equation 

0 1 n 
- -  . ~ - -  V -  = 0 ( 2 )  aql~ 1-q q 

which gives q = n/(1 + n). However, the value of  n is not arbitrary, but 
rather coincides with its average value f = q ( 1 -  q)~oo=~ nqn-1, so that the 
geometric distribution (1) becomes 

fill 
S . 

f G ( n ,  f )  (1 + /~)n+l (3)  

when the maximum likelihood value of the parameter q is introduced. 
The quantity f ~  is the probability of observing the value n, whose true 

value we know to be ~. The most general form of such a law of  error for 
which the most probable value is equal to the mean of the distribution is 
(Lavenda, 1988) 

logfS(n; fi) = ~ ' ( ~ ) ( n - f i ) + ~ ( f ) + 6 ( n )  (4) 

The connection with statistical thermodynamics is made by setting the 
normalization condition 

E e x p { n ~ ' ( f i ) + ~ ( n ) } = e x p { f i ~ ' ( f ) - ~ ( ~ ) }  
n 

(5) 

equal to one of the moment generating functions of statistical mechanics. 
Since it is essential that the particle number vary, we must be working in 
a grand canonical ensemble for which 

~p(fi)- ~o'(fi)fi = - P V / k T  (6) 

where PV is the  grand canonical potential, k is Boltzmann's constant, and 
T is the absolute temperature. From the property of Massieu functions, the 
potential ~ can be identified with the negative of  the statistical entropy, since 

\a~]~,v \Ofi/r 

= S e ( f ) -  + f i = - -  (7) 
1 1 T 
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The form of the logarithm of the moment generating function in (6) 
could have been achieved by minimizing the "discrimination information" 
(Kullback, 1968) 

, { f ~ ( n ;  ~)'~ 
~(~)= Eft(n;n ~) log~ 77~5 ) 

subject to the constraints that ~ ,  nff(n; t~)= t~ a n d f f ( n ;  t~) is normalized. 
Although both the minimization of the discrimination information statistic 
subject to the imposed constraints and Gauss' principle lead to probability 
distributions which belong to exponential families, Gauss' principle does 
not make use of constraints and the identification of the system is made by 
specifying the moment generation function. 

With the identification made in (7), Gauss' law of error (4) leading to 
the average value as the most probable value becomes 

i f (n;  ~)= exp{-~kl [ x ( n -  t~) + b~ ~ (n ) ]}  

exp{-  [xn - ~(n)]/k} 
- ( 8 )  

~(1 /T , /z /T ,  V) 

where ~ = exp(PV/kT) is the moment generating, or grand partition, func- 
tion and 

_ _ / z + e  (9) 

is the thermodynamic force, where tt is the chemical potential and the 
average energy ~ is related to the average number of particles R according 
to ~ = r~e, so that e is the energy per particle. 

In expression (8), we have set r to the stochastic entropy 

~(n)= k log ~)(n) (10) 

where f t(n)  is known in statistical mechanics as the "structure" function 
(Khinchin, 1949). In probability theory, f~(n) represents the prior distribu- 
tion, which is converted into the posterior distribution i f (n;  ~) through 
observations made on the random quantity n. In this interpretation, ~ would 
be the arithmetic mean of the measurements, which we have assumed equal 
to the mean of the distribution (McBride, 1968). This is rigorously so when 
the number of observations increases without limit. 

According to Greene and Callen (1951 ), there is a fundamental theorem 
in statistical mechanics, "rooted in the enormously high dimensionality of 
the phase spaces," to the effect that the statistical entropy ow is the same 
function of t~ as the stochastic entropy ~, is of n. Otherwise, they claim, 
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there would be a separate thermodynamics for each of the ensembles in 
statistical mechanics. 

Applying the foregoing results to the geometric distribution (3), the 
statistical entropy is found to be (Lavenda, 1988) 

S~(~) = k{(1 + ~) log(l + fi) - r~ log ~} (11) 

while the stochastic entropy vanishes. The thermodynamic force (9), equat- 
ing the derivative of the statistical entropy with that of the thermodynamic 
entropy, then gives 

[ l + f i \  e - p .  
k l o g / - - / =  \ ~ ]  T 

which, when rearranged, is easily seen to be the Bose distribution 

fi = 1/[e (~-~)/kr- 1] (12) 

Apparently, the Greene-Callen principle does not apply, since the stochastic 
entropy vanishes. Furthermore, the statistical entropy (11) has lost the 
property of extensivity, since the structure function (10) has shrunk to unity, 
which implies a uniform prior distribution. 

In regard to blackbody theory, the resonator energy ~ is obtained by 
multiplying (12), with/~ -= 0, by e = hr. It is related to the equilibrium field 
energy p = m~, where m d v = 8 ~ r v 2 V d v / c  3 is the number of modes in a 
volume V in the frequency interval dv (Planck, 1900). But if there were 
two separate entities, then the entropy of the resonators would approach 
zero for values of fi large in comparison to unity, while the entropy of the 
field would remain finite. Einstein's (1917) argument applies to the entropy 
of radiation, where he concluded that for large values of v~ T it displays 
particle, rather than wave, characteristics. 

The entropy per oscillator which is derived from the negative binomial 
distribution is 

SNa(/]) = (1 §  + ~ )  ~ - - m l o g ~  (13) 

where SNa= YNB/m. Working backward, we construct the corresponding 
distribution according to Gauss' law of error (4) as 

( f i lm)  "/m ( l + n / m )  '+"/m 
fS(n; f i ) - ( l + ~ / m ) l + . / m  ( n / m ) . / ,  . (14) 

which is the negative binomial distribution per oscillator, f~a = (fs)m. For 
m -- 1, it does not reduce, however, to the geometric distribution (3). 
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An immediate generalization of the geometric distribution pq,,-t is the 
Pascal distribution 

i,-l  . . . .  
f ~ ( n ; q ) = t m _ l ) p  q , n = m , m + l  . . . .  (15) 

where m must be an integer, which need not be the case for the negative 
binomial distribution. In fact, the normalization of the Pascal distribution 
is guaranteed because (15) is pm times the ( n - m  + 1) th term in the series 
expansion of (1 _q) -m in powers of q; namely, 

( 1 - q ) - m  = Y, ( -q)~  
n = O  

= 2  
n ~ O  

In fact, the Pascal distribution (15) is closely related to the negative binomial 
distribution 

f ~B(n ;q )=(  m + n - l '  " n 
- 1  ) P  q (17) 

The Pascal distribution (15) is usually interpreted in probability theory as 
giving the probability that n repetitions are needed in order that an event 
has occurred m times. The negative binomial distribution (17), on the other 
hand, gives the probability that there will be exactly n trials prior to the 
occurrence of the m th event. The coefficient in the negative binomial distribu- 
tion (17) has been interpreted by Ehrenfest and Kamerlingh Onnes (1914) 
to be the number of distinguishable distributions of n "energy grades" 
among m "oscillators". The number of distinguishable distributions in 
which no cell remains empty is given by the binomial coefficient appearing 
in the Pascal distribution (15). It will be seen that the requirement that each 
cell be occupied by at least one particle is reponsible for the so-called 
"zero-point" energy. 

Both the negative binomial, (17), and Pascal, (15), distributions can 
be written in the form of  Gauss' law of error (4), where 

6eNB/p(~)=k{+(~•  (18) 

and 

~ N B / p ( n ) = k { • 1 7 7  (19) 
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are the statistical and stochastic entropies of the two distributions, respec- 
tively. The statistical entropies give rise to two thermal distributions which 
differ by a zero-point energy. Invoking the second law to the entropy of 
the negative binomial distribution gives 

[ m + ~ \  e - #  
- -  

\ O~ / v  T 

o r  

= rn/[e (~-~) /kT-  1] (21) 

while the same law applied to the entropy of the Pascal distribution results 
in 

, ,  , , ,  

o r  

= m { 1 / [ e  ~ - ~ ) / k v -  1] + 1} (23) 

It is quite remarkable that whereas both the negative binomial and 
Pascal distributions describe boson statistics, the lack of uniqueness is 
directly related to the absence or presence of a zero-point energy. The 
distinction between the two distributions can be discussed in terms of the 
variances of the distribution. Differentiating (20) a second time, we find 
the dispersion to be given by 

2 __ k {02~ -1 

\-TT/v 
while (22) yields 

=~fi (m + r/) (24) 
m 

(s - 
= - k \ a f f 2 , l v  m 

cry= = n ( f i - m )  (25) 

The variance of the negative binomial distribution (24) can be interpreted 
as a sum of two independent contributions, one arising from the particle 
nature of bosons and the other from the wave nature (Einstein, 1909). For 
photons with frequencies much greater than k T / h ,  fi/m<< 1, so that the 
second term is negligible in (24) with respect to the first term. In this limit, 
the negative binomial distribution transforms into the Poisson distribution 
(Lavenda, 1988); the field contribution has vanished and what subsists is 
characteristic of the particle nature of light. In terms of Einstein's theory 
of radiation, the particle nature corresponds to spontaneous emission, while 
the wave or field contribution is represented by stimulated emission. 
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Although the variance of the Pascal distribution (25) is numerically 
equal to the negative binomial variance (24), the decomposition of the 
variance into particle and wave components is no longer possible. And, in 
fact, it indicates a variation of the Einstein radiation mechanism, as we 
shall now describe. 

3. AN ALTERNATIVE RADIATION MECHANISM 

Radiation is introduced into a cubical volume V with ideally reflecting 
walls. We impose the condition that each stationary mode must contain at 
least m quanta. Let n (-> m) be the total number of quanta in a stationary 
wave of frequency z,. Photons are absorbed by minute blackbodies, such as 
a few particles of ideal coal dust placed in the cavity, at a rate a ( n -  m) 
and are reemitted at a rate /3n. In comparison to Einstein's radiation 
mechanism (Einstein, 1917), the rate of absorption is an, while the rate of 
(stimulated + spontaneous) emission is/3n + 3'. 

Although both the negative binomial and Pascal distributions yield 
Bose statistics, there is a clear distinction in the interpretation of the 
parameter m. In the negative binomial distribution, m represents the number 
of standing waves or "cells" whose frequency lies in a given interval, while, 
in the Pascal distribution, rn represents the minimum number of  photons 
that must be in each monochromatic standing wave. 

The master equation describing the process is 

jr(n) = { a ( E -  1)(n - m)+ fl(~--~ - 1)n}f(n)  (26) 

where the step operator n: acts to give F_f(n) = f (n  + 1) and ~:-lf(n) = f ( n  - 1). 
The step operator possesses the property that (e.g. van Kampen, 1981) 

g(n)~_f(n)= ~ f(n)~_-lg(n) 
n = m  n = m + l  

The stationary probability distribution which satisfies a ( n - m ) f S ( n )  = 
fl~_-]nf~(n) is easily seen to be 

X--d-- /  \ a - /  (27) 

which is the Pascal distribution (15) with q = ~/a .  Furthermore, from the 
fact that 

( 0 q  o 
--~--/v = k log ~ (28) 

and the second law, we obtain in the case of photons in the mode with 
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frequency v that 

fl---= e -h~/kT (29) 
O/ 

The average equation of motion, 

n =/3t~ - ce(a - m) (30) 

is obtained by multiplying the master equation (26) by n and summing over 
all n-> m. The stationary solution to (30) is 

am m 
t~ = - _e-h~/k r (31) a - / 3  1 

where the consequence of the second law (29) ensures that the absorption 
coefficient is greater than the coefficient of stimulated emission. In the 
high-frequency limit, a ~ m, while in the low-frequency limit, r~ * mkT/hu .  

The equation of motion for the variance 0 -2= ( n -  ~)2 is 

�89 .2 = - (a  -/3)0-2 + l a  (t~ - m) + �89 (32) 

The asymptotic stationary value of the variance is found to be 

2 o~Srn/(o~ - /3 )  2 (33) 0-co  ~ 

which is seen to coincide with expression (25) when (33) is evaluated with 
the aid of the asymptotic expression for the mean value, (31). In the diffusion 
approximation, the diffusion coefficient in the particle number is defined as 

Dp~  �89 {o: ( t i  -- m) +/3r~} = a m / ( e  h~/kr - 1) (34) 

which is precisely the last two terms in (32). 

4. A MODIFIED MAXWELL DISTRIBUTION FOR 
BLACKBODIES 

Einstein's (1917) derivation of the Planck radiation law was motivated 
in large part by Wien's (1896) original argument leading from the Maxwell 
velocity distribution 

=(1---~' /=e-V2/Z~ (35) f ' ( v )  dv \2",'rO] 

for the number of molecules in the velocity range dr, where v is the velocity 
in a single direction, to his "chromatic" distribution function. Parentheti- 
cally, we may add that Maxwell's (1860) original derivation of his velocity 
distribution was both stimulated and based upon the law of errors which 
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is a function of the error only, and for which positive and negative errors 
are equally probable. Viewed in these terms, the derivation of the statistical 
distributions in Section 2 is a generalization of the law of errors to Bose 
statistics. 

Wien set the constant 19 in (35) proportional to the absolute temperature 
on the strength of the equipartition law. Then he considered the wavelength 
of radiation A emitted by any molecule to be a function of its velocity. 
Inverting this unknown dependence between h and v and assuming that 
the energy density of the field is proportional to the number of molecules 
radiating in the range dA, Wien obtained p(h, T ) =  g ( A ) e x p [ - h ( A ) / T ] ,  
where g and h are two unknown functions. But from his previous work, 
Wien knew that p had to be of  the form A-s&(AT), where the function ~b 
depends only on the product AT. Setting the two expressions equal to one 
another, he came out with p(h, T) = aA -5 exp(-b/hT), where a and b are 
adjustable parameters. Wien actually employed the law of equipartition of 
energy for translatory motion, while his distribution law is in contradiction 
with the Rayleigh-Jeans result, which is a direct consequence of the law of 
equipartition of energy as applied to the vibrational modes of electromag- 
netic radiation. 

We now consider the physical processes involved in establishing a type 
of Maxwell distribution without imposing the law of equipartition for 
translational motion. It was already clear from the work of Einstein and 
Hopf  (1910) that the law of equipartition failed even in the case of the 
translatory motion in blackbody radiation. The fact that the law of  equiparti- 
tion of energy breaks down even for translational motion will be seen to 
be related to the fact that the average kinetic energy of the Brownian particle 
is related to the average oscillator energy [cf. equation (41) below]. 

The Einstein-Hopf analysis dealt with oscillators that are free to move 
and oscillate only in a single direction. Their argument was based on 
Brownian motion of a system with two degrees of freedom, although they 
considered only fluctuations in the momentum caused by the emission and 
absorption of radiation. Damping results from the process of emission, 
while the process of absorption of radiation creates a residual acceleration 
that is caused by fluctuations in the impinging radiation and give rise to a 
radiation pressure. 

The velocity space diffusion coefficient is obtained by multiplying (34) 
by h~,. We then obtain 

~ p  = a m h t , /  ( e h~/kT-  1) (36) 

which is a prototype of a fluctuation-dissipation relation (Lavenda, 1985). 
The diffusion coefficient is proportional to the mean square displacement 
in the velocity over a short but finite time interval and the term urn is related 
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to the dissipation. This formula applies even when there is only one 
Brownian particle. 

In the low-frequency limit, it reduces to the Einstein formula 

~p-~- ~TkT/ M (37) 

if we identify c~rn with ~ / M ,  where M is the mass of a Brownian particle 
and 77 has dimensions of a frequency which is proportional to the viscosity 
coefficient. The diffusion coeff• in the case of gases, is directly propor- 
tional to the viscosity, which explains the fact that the viscosity of a gas 
increases when the temperature is raised (e.g., Frenkel, 1946). 

The term am has the same role here that the coefficient of spontaneous 
emission has in Einstein's theory of radiation (Lavenda, 1989). There, the 
coefficient of radiation damping is the linewidth at half-maximum, which 
is just equal to the total spontaneous transition probability per unit time 
(Heitler, 1954, p. 33). If  otto plays the same role as the radiation damping 
coefficient, then in a state of dynamical equilibrium the "damping" force 

~ =  - ( o ~ m ) M v  (38) 

is balanced at each instant in time by an "osmotic" pressure force originating 
in the statistical fluctuations of the radiation pressure. The dynamical 
equilibrium condition is 

0 log f~, 
~p = ~ p - -  (39) 

Ov 

With the diffusion coefficient given by (36) and the damping force by (38), 
the stationary probability density must be given by 

~ M [ e x p ( h v / k T )  1] 1/2ex p exp 
f~,(v) dv = [. 27rhv - ~ - ~  - ~  

The average kinetic energy of the Brownian particle is just one-half as great 
as the average oscillator energy at the same temperature, 

M y  2 = hv /  ( e h~/kr-  1) (41) 

since the average motion is in one direction while the radiation is traveling 
in both directions. 

In contrast to (36), the diffusion coefficient in the Einstein (1917) 
mechanism is 

~NB = yhv/(1 - e -m'/kr) (42) 

where y is the coefficient of spontaneous emission. With the damping force 

�9 ~NB = - y M v  (43) 
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the condition of dynamical equilibrium, o~NB = ~NB 0 logf~B/OV, yields the 
stationary distribution 

f ~ ( v )  d v = { M [ 1 - e x p ( - h u / k T ) ] ' ~ e x p {  Mv2r hv 
J - 2-~-v [ 1 - exp( -k -T)  ] } dv 

(44) 

Consequently, according to Einstein's radiation mechanism, twice the 
average kinetic energy is given by the expression 

M y  2 = hv /  (1 - e -h~/kr) (45) 

instead of (41). 
The difference between (41) and (45) lies in the presence of the 

zero-point energy hv in the latter expression. In contraposition, the average 
energy of the field at frequency v is 

~p = ~hv = m h v { 1 / ( e  h~/kr-  1)+ 1} (46) 

for the Pascal distribution while 

"~NB = ~hv = m h v /  ( e h~/kr-  1) (47) 

for the negative binomial distribution. Therefore, if the zero-point energy 
is absent in the expression for twice the average kinetic energy of the particle, 
it is found in the field and vice versa. The effect of the zero-point energy 
can be discerned most easily in the case of Doppler broadening. 

Atoms in a gas at temperature T have a spread in their velocities which 
through the Doppler effect produce a corresponding distribution in the 
frequencies at which they can absorb or emit light. If light is emitted, say 
in the x direction, then the line will be shifted by an amount 

~v= vov/c 

where v0 is the frequency that an atom would absorb if it were at rest before 
and after absorption. It usually assumed (Heitler, 1954, p. 187) that the 
vecloties are distributed according to the Maxwell distribution (35) with 
0 = k T / M ,  so that the probability distribution, proportional to the intensity, 
will be given by 

f ~ ( v )  dv = ( M / 2 ~ k T )  1/2 e x p ( - M c 2 A v 2 / 2 v ~ k T )  dv (48) 

Thus, the full-width of the Doppler-broadened line at half-maximum is 

[ 2 k T  \ 1/2 
,Sc = ~'o/.-:-77 log 2) (49) 

\1v1r 
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according to classical theory. However, if we do not assume equipartition, 
we obtain 

{(2hq 1 },,2 
ap = Vo \~c-~c~/log 2" eh~/kr  - 1 (5o) 

o r  

I [ 2hv'~ 1 1 '/= 
6N. = Vo [ \~CSCZ j log2"  l_e_h . /k  TJ (51) 

depending upon whether the Pascal, (40), or negative binomial, (44), velocity 
distribution were used, respectively, instead of the Maxwell distribution 
(48). 

The breadths at half-maximum predicted by the three distributions are 
reported in Table I for the typical values hv/2Mc 2~ 1 0  - 9  and v/c  ~ 10 -5. 
For a rest mass of Mc 2 ~ 1.5 x 10 -1~ J, this corresponds to a wavelength of 
visible light between red and orange. It is apparent that the Pascal distribu- 
tion cannot account for Doppler line broadening. If v<< k T / h  could be 
reached, all three line breadths would coincide with the classical breadth 
based on the law of equipartition. In the opposite limit v >> kT/h,  the line 
breadth resulting from the negative binomial distribution becomes indepen- 
dent of the temperature, which, at room temperature, occurs in the lower 
part of the visible portion of  the spectrum, as indicated in Table I. It predicts 
a square root dependence on the frequency of the external light source, 
independent of the temperature, whereas the classical line breadth predicts 
a square root of  the temperature, independent of  the frequency. At higher 
frequencies, the line shift predicted by the negative binomial distribution 
would be an order of magnitude greater than that predicted classically. 

According to kinetic theory, the pressure of a gas is given by 

p = �89 2 (52) 

where m is the number of modes in the interval dv in the negative binomial 
distribution, or the minimum number of quanta in any mode of the elec- 
tromagnetic field in the case of the Pascal distribution. In terms of the 

Table I. L ine  B r e a d t h s  a t  H a l f - M a x i m u m  Pred i c t ed  b y  the  T h r e e  D i s t r i bu t i ons  

T ( K )  a (nm)  hvo/kT 8c/ /Jo ~la/ VO (~NB/ "/JO 

300 666 72 6.2 • 10 -6 10 -20 5.3 x 10 -5 

1600 666 13.5 1.4 x 10 -5 6.2 x 10 -8 5.3 • 10 -5 
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average energy of the field per unit volume at a given frequency, expression 
(52) can be written as 

1 -- 
P - -  3 ~ p a r  (53) 

which is the expression for a photon gas or an ext__reme relativistic electron 
gas where the average particle energy ~par = MY 2. It is usually attributed 
to the fact that there is a linear relation between energy and momentum as 
opposed to the classical, or quasiclassical, case, where the energy is propor-  
tional to the square of  the momentum (Landau and Lifshitz, 1969). This 
can also be understood in terms of the difference of  the number  of  degrees 
of  freedom between a particle with one degree of freedom as opposed to 
a wave with two degrees of  freedom. In the part icle-wave duality, the 
average energy must be twice the average kinetic energy in order to account 
for the missing degree of  freedom in the particle description. 

I f  equipartition of energy were to apply, then the pressure would tend 
to zero with the temperature. In Bose statistics, the value of the gas pressure 
becomes less than the classical value as the temperature is lowered. This is 
interpreted as an effective "at tract ion" between the particles. Now, in the 
case of  the Pascal distribution, the pressure is given by 

pp = lh~'me-h~/kr (54) 

at low temperatures,  which corroborates this tendency of the particles to 
attract one another. At absolute zero, all the particles are in their lowest 
quantum state with no momentum and consequently make no contribution 
to the pressure. In contradistinction, the negative binomial distribution 
would predict that 

PNB = �89 (55) 

which resembles more a Fermi gas having a nonzero energy a t  absolute 
zero. This would give rise to a molecular agitation at absolute zero Kelvin, 
which would be foreign to the usual behavior of  a Bose gas which undergoes 
condensation in momentum space, for it would predict that there would 
always be a finite number  of  molecules in higher energy states. 
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